车联网与智能驾驶 2018-12-26 15:18 No Comment 车联网与智能驾驶方向主要围绕多车、多车路协同的新型网络互联与服务,利用大数据、人工智能等新兴技术与手段,研发新型融合网络与服务体系、群体智能服务模型、智能驾驶与智慧城市领域应用新技术。 主要重点包括: - 群智计算 - 多代理深度强化学习 ---------- ### 科研团队 ### 袁泉 杨树 朱小陆 罗贵阳 魏晓娟 ---------- ### 承担课题 ### - 基于博弈强化学习的交通态势协同演化机制研究(61876023),国家自然科学基金面上项目,2019~2022(PI) - 5G动态车联网环境下的网络资源优化调度与车辆移动优化方法(4181002),北京市自然科学基金重点项目,2018~2020 - 5G支持ICT融合自动驾驶的关键技术研发与验证(2016ZX03001025-3),国家科技重大专项课题,2016~2017(PI) - 融合网络环境下实时与自适应的服务选择机制研究(61472047),国家自然科学基金,2015~2018 ### 成果获奖 ### - 基于群体智能的车联网服务支撑平台,人工智能学会,科技进步奖,三等奖,2017 ---------- ### 学术成果 ### - Li Jinglin, Luo Guiyang, Cheng Nanet al. An End-to-End Load Balancer based on Deep Learning for Vehicular Network Traffic Control[J]. IEEE Internet of Things Journal, 2018. ( DOI: [10.1109/JIOT.2018.2866435][1] ) - Quan Yuan, Zhou Haibo Zhou, Liu Zhihanet al. CESense: Cost-Effective Urban Environment Sensing in Vehicular Sensor Networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018. ( DOI: [10.1109/TITS.2018.2873112][2] ) - Luo Guiyang, Li Jinglin, Zhang Linet al. sdnMAC: A Software-Defined Network Inspired MAC Protocol for Cooperative Safety in VANETs[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19(6): 2011-2024.( DOI: [10.1109/TITS.2017.2736887][3] )(WOS:000433910400027) - Yuan Quan, Zhou Haibo, Li Jinglinet al. Toward Efficient Content Delivery for Automated Driving Services: An Edge Computing Solution[J]. IEEE NETWORK, 2018, 32(1): 80-86.( DOI: [10.1109/MNET.2018.1700105][4] )(WOS:000423572900012) - Yang Shu, Li Jinglin, Yuan Quanet al. Message Relaying and Collaboration Motivating for Mobile Crowdsensing Service: An Edge-Assisted Approach[J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018(1287969): 1-13.( DOI: [10.1155/2018/1287969][5] )(WOS:000441532500001) [1]: https://doi.org/10.1109/JIOT.2018.2866435 [2]: https://doi.org/10.1109/TITS.2018.2873112 [3]: https://doi.org/10.1109/TITS.2017.2736887 [4]: https://doi.org/10.1109/MNET.2018.1700105 [5]: https://doi.org/10.1155/2018/1287969